

BIRZEIT UNIVERSITY
Electrical and Computer Engineering Department
Power Electronics ENEE 3305

## An Assignment on Power Devices Switching

## Fall 2017

1. A chopper circuit supplying a highly inductive load and having an IGBT (BSM200GA120D) as a switch, has the following parameters: $I o=25 \mathrm{~A}$ (use a current source of 25 A to represent the RL load), $\mathrm{Vd}=400 \mathrm{~V}, \mathrm{fs}=15 \mathrm{kHz}, \mathrm{Ls}=700 \mathrm{nH}$ and ton=30us. Assume linear voltage and current falls and rises during switching to:
i) calculate the conduction and the switching power losses if $\mathrm{tc}(\mathrm{on})=400 \mathrm{~ns}, \mathrm{tc}(\mathrm{off})=600 \mathrm{~ns}$, assuming that Von=2.5V using the appropriate derived formulas
ii) In ORCAD/PSPICE, simulate a chopper circuit implementing an IGBT (BSM150GB50D) as a switch to supply a highly inductive load which has the following parameters: lo=25A, $\mathrm{Vd}=400 \mathrm{~V}, \mathrm{fs}=15 \mathrm{kHz}, \mathrm{Ls}=700 \mathrm{nH}$ and ton=30us. In the results, show the turn-on and turnoff transitions (magnified) for the voltage, current and power losses in the IGBT.
iii) calculate the average power losses in the IGBT
2. If the chopper circuit is now supplying a purely resistive load of 15 Ohms (no parallel diode) and implementing the IGBT model. Assume linear voltage and current falls and rises during switching to:
a) calculate the conduction and the switching power losses if $\mathrm{Vd}=400 \mathrm{~V}, \mathrm{fs}=15 \mathrm{kHz}$, ton $=30 \mathrm{us}$, tc(on) $=400 \mathrm{~ns}, \mathrm{tc}(\mathrm{off})=600 \mathrm{~ns}, \mathrm{Ls}=700 \mathrm{nH}$ and Von=2.5V using the appropriate derived formulas
b) simulate the circuit in 2) using ORCAD/PSPICE and plot the magnified turn-on and turn off transitions of the voltage, current and power loss in the IGBT.
c) calculate the average power losses in the IGBT

The assignment is due to on Tuesday 24/10/2016.

